3-D velocity imaging in the shallow subsurface using multi-well, multi-offset, VSP data: a case study from the Lawrence Livermore National Laboratory site
نویسنده
چکیده
A vertical seismic profiling (VSP) method was developed to produce compressional (p-wave) velocity sections in a 3-D survey volume, down to a maximum depth of 57 m. The VSP method consisted of a multilevel hydrophone tool deployed down several wells. Multiple offset surface shotpoints were recorded at multiple azimuths around each well head, using an impact source. The VSP data were processed and inverted to produce p-wave interval velocities. These velocity sections were then projected into a model of the survey volume, together with borehole log information and other geologic information, to produce a 3-D visualization which aided the location and interpretation of aquifer boundaries below the water table. The final image displayed several low velocity zones, and these were attributed to partially saturated pore spaces, possibly both natural, or pump induced by air suction. Low velocity layers appeared above several actively pumped aquifers, and it was concluded that the multi-offset, multi-azimuth, VSP method may be suitable for mapping both aquifer channels, and zones of pumping influence.
منابع مشابه
Subsurface modeling of mud volcanoes, using density model and analysis of seismic velocity
Detection of subsurface structures by means of gravity method can be used to determine mass distribution and density contrast of rock units. This distribution could be detected by different geophysical methods, especially gravity method. However, gravity techniques have some drawbacks and can't be always successful in distinguishing subsurface structures. Performance of the gravity technique co...
متن کاملDimensionality analysis of subsurface structures in magnetotellurics using different methods (a case study: oil field in Southwest of Iran)
Magnetotelluric (MT) method is an electromagnetic technique that uses the earth natural field to map the electrical resistivity changes in subsurface structures. Because of the high penetration depth of the electromagnetic fields in this method (tens of meters to tens of kilometers), the MT data is used to investigate the shallow to deep subsurface geoelectrical structures and their dimensions....
متن کاملPrediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf
Shear and Compressional Wave Velocities along with other Petrophysical Logs, are considered as upmost important data for Hydrocarbon reservoirs characterization. Shear Wave Velocity (Vs) in Well Logging is commonly measured by some sort of Dipole Logging Tools, which are able to acquire Shear Waves as well as Compressional Waves such as Sonic Scanner, DSI (Dipole Shear Sonic imager) by Schlumbe...
متن کاملAn Optimum Selection of Simulated Geological Models by Multi-Point Geostatistics and Multi-Criteria Decision-Making Approaches; a Case Study in Sungun Porphyry-Cu deposit, Iran
An accurate modeling of sophisticated geological units has a substantial impact on designing a mine extraction plan. Geostatistical simulation approaches, via defining a variogram model or incorporating a training image (TI), can tackle the construction of various geological units when a sparse pattern of drilling is available. The variogram-based techniques (derived from two-point geostatistic...
متن کاملCrosswell electromagnetic tomography: System design considerations and field results
Electrical conductivity is an important petroleum reservoir parameter because of its sensitivity to porosity, pore fluid type, and saturation. Although induction logs are widely used to obtain the conductivity near boreholes, the poor resolution offered by surfacebased electrical and electromagnetic (EM) field systems has thus far limited obtaining this information in the region between borehol...
متن کامل